## Education

B.S.E., Aerospace Engineering, University of Michigan, 1981

Ph.D., Applied Mathematics, California Institute of Technology, 1986

## Focus Area

Numerical methods for PDEs, Fluid-structure interaction problems, Gas dynamics and wave propagation, Multi-scale and multiphase reactive flow, Adaptive and parallel algorithms, Mathematics for industrial applications## Selected Scholarly Works

K.B. Kiradjiev, C.J.W. Breward, I.M. Griffiths and D.W. Schwendeman, A homogenized model for a reactive filter, SIAM J. Applied Math, 81 (2021), 591-619.J.W. Banks, B.B. Buckner, W.D. Henshaw, M.J. Jenkinson, A.V. Kildishev, G. Kovacic, L.J. Prokopeva and D.W. Schwendeman, High-order accurate scheme for Maxwell's equations with a generalized dispersive material (GDM) model and material interfaces, J. Comput. Phys., 412 (2020), 109424.

F. Meng, J.W. Banks, W.D. Henshaw and D.W. Schwendeman, Fourth-order accurate fractional-step IMEX schemes for the incompressible Navier-Stokes equations on moving overlapping grids, Comput. Method. Appl. Mech. Engrg., 366 (2020), 113040.

M. Hennessey, A.K. Kapila and D.W. Schwendeman, An HLLC-type Riemann solver and high-resolution Godunov for a two-phase model of reactive flow with general equations of state, J. Comput. Phys., 405 (2020), 109180.

D.A. Serino, J.W. Banks, W.D. Henshaw and D.W. Schwendeman, A stable added-mass partitioned (AMP) algorithm for elastic solids and incompressible flow, J. Comput. Phys., 399 (2019), 108923.

D.A. Serino, J.W. Banks, W.D. Henshaw and D.W. Schwendeman, A stable added-mass partitioned (AMP) algorithm for elastic solids and incompressible flow: Model problem analysis, SIAM J. Scientific Computing, 41 (2019), A2464-A2484.

J.B. Angel, J.W. Banks, W.D. Henshaw, M.J. Jenkinson, A.V. Kildishev, G. Kovacic, L. Prokopeva and D.W. Schwendeman, High-order Accurate Scheme for Maxwell's Equations with a Generalized Dispersive Material Model, J. Comput. Phys., 378 (2019), 411-444.

J.R. Gambino, D.W. Schwendeman and A.K. Kapila, Numerical study of multiscale compaction-initiated detonation, Shock Waves, 29 (2019), 193-219.

J.W. Banks, W.D. Henshaw, D.W. Schwendeman and Qi Tang, A stable partitioned FSI algorithm for rigid bodies and incompressible flow in three dimensions, J. Comput. Phys., 373 (2018), 455-492

F. Meng, J.W. Banks, W.D. Henshaw and D.W. Schwendeman, CHAMP: A Stable and Accurate Partitioned Algorithm for Conjugate Heat Transfer, J. Computational Physics, 344 (2017), 51-85.

J.W. Banks, W.D. Henshaw, D.W. Schwendeman and Qi Tang, A stable partitioned FSI algorithm for rigid bodies and incompressible flow. Part I: Model Problem Analysis, J. Computational Physics, 343 (2017), 432-468.

J.W. Banks, W.D. Henshaw, D.W. Schwendeman and Qi Tang, A stable partitioned FSI algorithm for rigid bodies and incompressible flow. Part II: General Formulation, J. Computational Physics, 343 (2017), 469-500.

J. Gambino, A.K. Kapila and D.W. Schwendeman, Sensitivity of run-to-detonation distance in practical explosives, Combustion Theory & Modeling, 20 (2016), 1088-1117.

L. Li, W.D. Henshaw, J.W. Banks, D.W. Schwendeman and G.A. Main, A stable partitioned FSI algorithm for incompressible flow and deforming beams, J. Comput. Physics, 312 (2016), 272-306.

J.W. Banks, W.D. Henshaw, A.K. Kapila and D.W. Schwendeman, An added-mass partition algorithm for fluid-structure interactions of compressible fluids and nonlinear solids, J. Comput. Physics, 305 (2016), 1037-1064.

A.K. Kapila, D.W. Schwendeman, J. Gambino and W.D. Henshaw, A Numerical Study of the Dynamics of Detonation Initiated by Cavity Collapse, Shock Waves, 25 (2015), 545-572.

D.W. Schwendeman, C.P. Please, B.S. Tilley and F. Hendriks, A homogenization analysis of the compressible flow between a slider and a moving rough surface, IMA J. Appl. Math., 80 (2015), 177-211.

J.W. Banks, W.D. Henshaw and D.W. Schwendeman, An analysis of a new stable partitioned algorithm for FSI problems. Part I: Incompressible flow and elastic solids, J. Comput. Physics, 269 (2014), 108-137.

J.W. Banks, W.D. Henshaw and D.W. Schwendeman, An analysis of a new stable partitioned algorithm for FSI problems. Part II. Incompressible flow and structural shells, J. Comput. Physics, 268 (2014), 399-416.

D.W. Schwendeman, A.K. Kapila and W.D. Henshaw, A hybrid two-phase mixture model of detonation diffraction with compliant confinement, Comptes Rendus Mathematique, 340 (2012), 804-817.

D. Appelo, J.W. Banks, W.D. Henshaw and D.W. Schwendeman, Numerical methods for solid mechanics on overlapping grids: linear elasticity, J. Comput. Physics, 231 (2012), 6012-6050.

M. Ozlem, D.W. Schwendeman, A.K. Kapila and W.D. Henshaw, A numerical study of shock-induced cavity collapse, Shock Waves, 22 (2012), 89-117.

J.W. Banks, W.D. Henshaw and D.W. Schwendeman, Deforming composite grids for solving fluid structure problems, J. Comput. Physics, 231 (2012), pp. 3518-3547.